Finite partitions of spheres

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Packings of Spheres

We show that the sausage conjecture of László Fejes Tóth on finite sphere packings is true in dimension 42 and above.

متن کامل

The method of finite spheres

The objective of this paper is to present some of our recent developments in meshless methods. In particular, a technique is given ± the method of ®nite spheres ± that is truly meshless in nature in the sense that the nodes are placed and the numerical integration is performed without a mesh. The method can be viewed as a special case of the general formulation known as the meshless local Petro...

متن کامل

Fachbereich 3 Mathematik Finite Packings of Spheres Finite Packings of Spheres

We show that the sausage conjecture of LL aszll o Fejes TT oth on nite sphere pack-ings is true in dimension 42 and above.

متن کامل

Finite Metric Spaces and Partitions

For example, IR with the regular Euclidean distance is a metric space. It is usually of interest to consider the finite case, where X is an n-point set. Then, the function d can be specified by ( n 2 ) real numbers. Alternatively, one can think about (X,d) is a weighted complete graph, where we specify positive weights on the edges, and the resulting weights on the edges comply with the triangl...

متن کامل

Stirling number of the fourth kind and lucky partitions of a finite set

The concept of Lucky k-polynomials and in particular Lucky χ-polynomials was recently introduced. This paper introduces Stirling number of the fourth kind and Lucky partitions of a finite set in order to determine either the Lucky k- or Lucky χ-polynomial of a graph. The integer partitions influence Stirling partitions of the second kind.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1982

ISSN: 0097-3165

DOI: 10.1016/0097-3165(82)90012-7